BRAINS IN BRIEFS
Scroll down to see new briefs about recent scientific publications by neuroscience graduate students at the University of Pennsylvania. Or search for your interests by key terms below (i.e. sleep, Alzheimer’s, autism).
A case of leaky brain barrier: how missing a piece of chromosome 22 can lead to schizophrenia
or technically,
Disruption of the blood-brain barrier in 22q11.2 deletion syndrome
[See original abstract on pubmed]
or technically,
Disruption of the blood-brain barrier in 22q11.2 deletion syndrome
[See Original Abstract on Pubmed]
Authors of the study: Alexis M Crockett, Sean K Ryan, Adriana Hernandez Vásquez, Caroline Canning, Nickole Kanyuch, Hania Kebir, Guadalupe Ceja, James Gesualdi, Elaine Zackai, Donna McDonald-McGinn, Angela Viaene, Richa Kapoor, Naïl Benallegue, Raquel Gur, Stewart A Anderson, Jorge I Alvarez
Our brains are like car radios -- they tune into different stations for various thoughts and experiences. However, sometimes the station might change without a person touching the radio knob, leading them to hear sounds or voices that are not real in a way that they can't control. Imagine you are on a road trip with your friends, listening to a carefully curated Taylor Swift soundtrack, when all of the sudden, you only hear Kanye West rapping -- while your friends insist that Kanye hasn’t been playing at all! The idea of hearing something that no one else does is super confusing and frightening, especially because sometimes these stations that only you are tuned into could be ominous -- rather than Kanye rapping, you might hear someone that sounds like a scary character from a horror movie. Alternatively, what if you suddenly have zero interest in listening to Taylor Swift despite being known as her biggest fan for years? Such sudden disconnect-from-reality circumstances and/or the lack of interest and emotions are experienced by people with schizophrenia, a chronic mental illness that can seriously interfere with daily life functions. Medicine and therapy can help to manage symptoms of schizophrenia, but there is currently no cure. One reason for the lack of a cure is that we have yet to fully pinpoint the causes of this disorder, making it difficult to inform therapeutic strategies directly targeting those causes.
Scientists have identified many different genetic mutations that are linked to schizophrenia diagnoses. However, these mutations are not found in all individuals with schizophrenia. In addition, people with these mutations do not necessarily develop schizophrenia. A complex combination of genetic, environmental and lifestyle factors contributes to the development of this disorder. Generally, diseases with strong genetic drivers often have more well-defined biological mechanisms, which makes them easier to study. One of the strongest genetic risk factors in schizophrenia is the deletion of a segment of chromosome 22, herein referred to as 22q11.2 deletion, which results in the loss of 40-50 genes. Strikingly, approximately 25% of people bearing 22q11.2 deletion are diagnosed with schizophrenia, putting these people at much higher risk than the general population. Hence, deciphering the commonality among individuals with 22q11.2 deletion might help us better understand the disease mechanism(s). Dr. Alexis Crockett, a former Neuroscience Graduate Group student in the Alvarez lab at University of Pennsylvania, set out to explore how 22q11.2 deletion alters the brain in the way(s) that might cause schizophrenia.
Unlike most organs in the body, the brain is extremely delicate, with limited ability to regenerate if it is damaged. Therefore, to protect the brain, access of substances in the bloodstream to the brain is tightly controlled by a special filter, referred to as the blood-brain barrier. This structure forms a barrier that is critical for keeping various harmful particles such as bacteria, viruses, and environmental toxins from the brain. This brain barrier is made possible by densely packed endothelial cells, which are specialized cells that make up the blood vessels, and the many proteins between them like bricks and mortar, respectively. Therefore, only select substances are allowed to pass through the tiny pores of this barrier, if they are small enough or being transported by specific proteins from the blood-facing side of the cell to the brain-facing side of the same cell. This tight barrier is further reinforced by astrocytes which are a type of brain cell. Given that many of the deleted genes in the 22q11.2 region are proteins that make up this brain barrier, Dr. Crockett and colleagues hypothesized that the brain barrier is leaky in patients with 22q11.2 deletion.
To explore this hypothesis, they employed a mouse model with a similar 22q11.2 deletion as found in humans. Two proteins in the bloodstream, which are known to normally be kept out of the brain, were instead found in the brain tissue of these mice. Furthermore, they observed a marked increase in the amount of ICAM-1, a protein that aids immune cells in sticking to and migrating across the endothelial cell layer. An intact brain barrier normally restricts entry of the immune cells into the brain to avoid uncontrollable inflammation. However, in the brains of mice with 22q11.2 deletion, there was an increased level of inflammatory proteins in astrocytes of the brain. These evidence indicated a breach of brain barrier along with brain inflammation in the mouse model of 22q11.2 deletion.
Although mice are a valuable animal model for biomedical research, there are important differences between mice and humans. For instance, laboratory mice are quite genetically similar to each other, which fails to reflect the genetic complexity of schizophrenic patients. In order to study 22q11.2 deletion in human cells, Dr. Crockett and colleagues obtained cells from patients with this deletion. They then used established methods to change these cells to resemble the endothelial cells that make up the brain’s barrier, allowing them to examine the integrity of the human brain barrier in the dish. Compared to endothelial-like cells derived from healthy individuals, endothelial-like cells derived from patients with 22q11.2 deletion showed an increase in leakiness. Similar to their findings in mice, there was also a higher level of the adhesion protein ICAM-1 in the human endothelial-like cells with 22q11.2 deletion. Indeed, human immune cells readily crossed endothelial-like cell layer, consistent with known effect of high ICAM-1 level on immune cell migration.
Together, the work led by Dr. Crockett demonstrated that in the context of 22q11.2 deletion, the brain barrier is dysfunctional, permitting the entry of prohibited particles, and subsequently triggering inflammation in the brain. Interestingly, impaired function of the brain barrier has been reported in other cases of schizophrenia without clear genetic mutations, suggesting that a leaky brain barrier might be one of the underlying mechanisms contributing to the development of schizophrenia. Dr. Crockett's findings not only help us further understand the complex origins of this devastating disease, but also may lead to better treatment strategies for schizophrenia by targeting the brain’s barrier.
Curious to learn more about what Dr. Crockett and colleagues discovered? Check out the details of this work here.
How support cells in the brain support sleep.
or technically,
Endocytosis at the Drosophila blood-brain barrier as a function for sleep.
[See Original Abstract on Pubmed]
or technically,
Endocytosis at the Drosophila blood-brain barrier as a function for sleep.
[See Original Abstract on Pubmed]
Authors of the study: Gregory Artiushin, Shirley L Zhang, Hervé Tricoire, Amita Sehgal
Although neuronsA nerve cell that uses electrical and chemical signals to send information to other cells including other neurons and muscles are important in mediating sleep, the non-neuronal support cells of the brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. (known as glial cells) have also been linked to sleep regulation. Glial cells are a class of cells that surround all neuronsA nerve cell that uses electrical and chemical signals to send information to other cells including other neurons and muscles and are critical for their survival; they perform important ‘maintenance’ tasks for neuronsA nerve cell that uses electrical and chemical signals to send information to other cells including other neurons and muscles including providing them with nutrients and oxygen, insulating their electrical connections, and clearing dead cells and waste from their surroundings. Glial cells may help with waste clearance in the brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. during sleep, and can also release molecules that promote sleep2. In order to carry out their functions properly, glial cells have to move cargo into and out of the cell. This is mainly done through endocytosis, where things outside of the cell are captured into sacs and brought into the cell, much like packaging something important for transport. Although this process of endocytosis is important for glial cell performance overall, scientists still aren’t sure if endocytosis in glial cells is important for sleep. Additionally, it is not known which of the many types of glial cells are important in regulating sleep (there are over four main classes of glia).
Greg decided to use fruit flies to study the importance of endocytosis in sleep. Yes, flies sleep too! Not only are their sleeping patterns similar to that of humans, with a long period of sleep at night, but their genesA unit of DNA that encodes a protein and tells a cell how to function can also be easily manipulated in order to help scientists establish which genesA unit of DNA that encodes a protein and tells a cell how to function are important in regulating sleep. About 75% of known human disease genesA unit of DNA that encodes a protein and tells a cell how to function have a recognizable match in the genetic code of fruit flies3. These qualities make them a popular ‘model’ amongst scientists for studying sleep and its underlying mechanisms. To understand how endocytosis changed with increased sleep need, Greg deprived flies of sleep and then looked at how endocytosis was affected in their glial cells. He found that endocytosis was increased after sleep deprivation, and that this correlated with how sleep-deprived the flies were. Since this suggested that endocytosis was somehow linked to sleep, Greg wanted to explore this link further by blocking endocytosis entirely and seeing what happened to sleep. To do this, he generated a mutated form of a geneA unit of DNA that encodes a protein and tells a cell how to function that is critical for endocytosis in flies, allowing him to effectively block endocytosis in these animals. By mutating this geneA unit of DNA that encodes a protein and tells a cell how to function only in glial cells, Greg was able to block endocytosis exclusively in glial cells of the brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals.. Interestingly, he saw that this increased how long the flies slept, suggesting that endocytosis in glia somehow controls the process of sleep.
Since there are many types of glial cells, Greg wanted to next understand which type of glial cells were important in sleep. Using the same genetic mutation strategy, Greg blocked endocytosis in each specific type of glial cell: he expressed the mutation in one type of glial cell at a time while leaving endocytosis in all of the other types of glia intact. This allowed him to determine which type of glial cell(s) was responsible for the effects he saw when he blocked endocytosis in all glial cells. He found that endocytosis in one particular type of glial cell was linked to sleep duration. This type of glial cell makes up the blood-brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. barrier in flies. The blood-brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. barrier, or BBB, is composed of tightly-linked glial cells that separate the brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. from the rest of the body. This barrier acts as a roadblock that prevents many substances from getting into the brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals., which is crucial for protecting the brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. from pathogens or toxins. Greg found that blocking endocytosis only in the BBB glial cells caused changes in the structure of the barrier and increased sleep. However, blocking endocytosis in other types of glia did not affect the BBB or sleep.
Greg’s work suggests that endocytosis in the glial cells of the BBB of the fly is an important regulator of sleep, identifying a specific mechanism that may also be crucial in human sleep. Exactly how endocytosis at the BBB affects sleep duration remains unknown, but it is possible that this process may be important in waste clearance or maintenance of the BBB. If endocytosis is disrupted, these processes may be impaired leading us to sleep longer as a way of compensating. Future studies will aim to address why disrupting endocytosis in these BBB glial cells messes up the sleep cycle. Greg’s findings in this study (and future experiments) are important because they allow researchers to understand exactly how these processes at the BBB could be important for human brainThe brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. function, and how they may be altered in sleep deprivation and sleep disorders, such as insomnia. Scientists might finally be on track to figure out why pulling an all-nighter turns us into sleep-deprived zombies!
Citations:
Shokri-Kojori E, Wang G, Wier CE, Demiral SB, Guo M, Kim SW . . . Volkow ND. (2018). β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proceedings of the National Academy of Sciences, 115(17): 4483-4488. You can find the paper here.
Halassa MM, Florian C, Fellin T, Munoz JR, Lee S, Abel T . . . Frank MG. (2009). Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 61(2): 213-219. You can find the paper here.
Pandey UB & Nichols CD. (2001). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacological Reviews, 11(6): 1114-1125. You can find the paper here.