Understanding the brain during mindfulness

Dale Zhou was the lead author on this study. Dale is interested in how the brain network compresses and reconstructs information as network structure changes across the lifespan. He aims to account for computations of memory and reward as network functions of dimensionality reduction and expansion using experimental, naturalistic, and clinical data.

or technically,

Mindful attention promotes control of brain network dynamics for self-regulation and discontinues the past from the present

[See Original Abstract on Pubmed]

Authors of the study: Dale Zhou, Yoona Kang, Danielle Cosme, Mia Jovanova, Xiaosong He, Arun Mahadevan, Jeesung Ahn, Ovidia Stanoi, Julia K. Brynildsen, Nicole Cooper, Eli J. Cornblath, Linden Parkes, Peter J. Mucha, Kevin N. Ochsner , David M. Lydon-Staley, Emily B. Falk, and Dani S. Bassett

In recent years, the practice of meditation has received a lot of attention for its health benefits, both physically and mentally. One popular form of meditation, mindfulness meditation, teaches individuals to focus on, and attend to the present moment. The ability to shift focus depends on the ability to orchestrate shifts in neural activity, and has been previously called executive function. While the benefits of mindfulness meditation are widely recognized, what’s going on in the brain is much less clear.

In order to understand how mindfulness is represented in the brain, Dale Zhou, a recent NGG graduate, and his collaborators recruited healthy college students who identified as social drinkers and asked them to perform a task rating from 1 to 5 how much they would crave an alcoholic drink, presented to them on a computer screen. Dale simultaneously measured the activity patterns in participants’ brains using functional magnetic resonance imaging, or fMRI, while they completed this task. One group of participants was instructed to practice mindfulness while rating their cravings by “mentally distancing themselves by observing the situation and their response to it with a more impartial, nonjudgmental, or curious mindset, and without getting caught up in the situation or response”. The other group was instructed to rate their cravings with their natural gut reaction to the drink.  For some trials, participants in the mindful group were asked to switch to their gut reaction instead, allowing Dale and his colleagues to compare which brain areas were simultaneously active or quiet during the different reactions. This allowed them to draw some interesting conclusions about how the brain represents mindfulness.

Figure 1: Simplified representation of brain states. In this example, the brain has only two areas and the brain state is defined by the activity of region 1 and region 2.

Before Dale analyzed the results from the experiment, he first asked how mindfulness can be measured in the brain and if the “amount” of mindfulness in our brains impacts our day-to-day behaviors. To answer this question, he used average brain activity from the participants’ scans to calculate a measure of the executive function called controllability. To understand controllability, it is helpful to think of the brain as having different “brain states” (Figure 1). When a person is doing some activity, like walking, the brain exists in a particular brain state - some brain areas are very active and some are quiet. When the same person is doing a different activity, like eating, the brain exists in a different brain state - a different set of brain areas are active and quiet. Dale and his colleagues defined controllability as how readily the brain can switch into any possible brain state. By calculating controllability for each participant, and tracking their drinking behavior weeks after the brain scan, Dale found that the participants with higher controllability tended to have fewer drinks than those with lower controllability, suggesting that perhaps mindfulness does impact our day to day behaviors in a positive manner. 

Now back to the experiment. Dale asked whether there were differences in controllability, and therefore brain activity, between the two groups.  To do this, he calculated the amount of effort, or control, it took for participants in each group to enter either a mindful state or gut reaction state while reacting to the alcohol cue. He found that participants instructed to react mindfully took more effort to enter this brain state after being prompted than participants instructed to react naturally took to enter their gut reaction brain state. This was exactly what they expected to see, since it is known that achieving a state of mindfulness initially requires more thought and brain activity. However, he also found that when participants from both groups were instructed to react naturally, those who had previously reacted mindfully still required more effort to enter this gut reaction brain state than those who had not. This suggests that practicing mindfulness might make us more effortful in attention, even when we are not actively trying or instructed to. 

Finally, Dale found that brain areas that use more effort had shorter episodes of neural activity. These shorter episodes suggested that there was less influence of the past in these areas. Furthermore, these quick episodes were typically found in brain areas that help us sense the world around us rather than areas that help us think about past experiences or plan for the future. Practicing mindfulness, therefore, may put us in a more effortful state of attention which is more focused on the present moment rather than on the past or future. 

In conclusion, Dale’s hard work on this project has allowed us to take a glimpse at the brain during mindfulness and how it might be benefiting our behavior. His work reminds us that, although the brain is composed of many different brain areas, human behavior is a product of these various areas interacting with one another, producing unique states of mind such as mindfulness. Work similar to his will hopefully lead the way to a better understanding of some of the brain’s other complex functions.

About the brief writer: Jafar Bhatti

Jafar is a PhD Candidate in Long Ding and Josh Gold’s lab. He is broadly interested in brain systems involved in sensory decision-making. 

Want to learn more about how these researchers study mindfulness? You can find Dale’s paper here!

Previous
Previous

Weight loss drugs can also be leveraged to curb nicotine use

Next
Next

A new method for looking through the (cyto)skeletons in the closet